

REGISTRATION OF A PRESSURE FITTING DESIGN

16-Nov-22

TSSA 345 Carlingview Drive Toronto, Ontario M9W 6N9

Attention: Tanya Francis

File Number: 13349 [0 F]

Re:Manufacturer:Headline Filters Ltd.Item:180VP FilterCatalog or Drawing:Scope of Registration (15-Apr-22) & Design Report R-1473 Rev. 0

TSASK Codes and Standards Compliance has registered the design listed above in accordance with The Boiler and Pressure Vessel Act and Regulations and CSA B51. The Canadian Registration Number (CRN) is:

0E7432.13 Expiry Date: April 29, 2032

Please note that every fitting shall be constructed in strict accordance with the registered design.

Fitting registrations are required to be resubmitted for validation after ten (10) years from the registration date in accordance with CSA B51, Clause 4.2.1.

Should you require anything further, please do not hesitate to contact the Codes and Standards Compliance Office at your convenience.

Yours truly,

Athan Syrgiannis, P.Eng. Codes and Standards Compliance

Remarks:

A valid quality control program must be maintained at the production facility for the fitting registration to remain valid until the expiry date.

Technical Safety Authority of Saskatchewan

(print name)

2202 2nd Ave. Regina, SK S4R 1K3 PH: (306)798-7112 Toll Free: (866)530-8599 FAX: (306)787-9273 Toll Free: (866)760-9255 Email: <u>boilerpermits@tsask.ca</u> Website: <u>www.tsask.ca</u>

Statutory Declaration (Registration of Fittings) **TSK-1008** I. Declaration Information Scott Hardiman 1. In this space, show facsimile of manufacturer's logo or trademark as it will appear on the fitting. Works Manager (company title, e.g. vice president, plant manager, chief engineer) (must be in a position of authority in the manufacturing plant where the fitting is produced) -leadlineFilters of: Headline Filters Limited (name of manufacturer) Mill Hall Business Estate, Aylesford, United Kingdom located at: ME20 7JZ (Plant Address - Apt/Street) (City, Prov) (Postal Code) do solemnly declare that the fittings listed hereinunder, which are subject to the Saskatchewan Boiler and Pressure Vessel Safety Act (check one) Comply with the requirements of ASME B31.3 which specifies the dimensions, (title of recognized North American Standard) Materials of construction, pressure / temperature ratings and identification marking of the fittings, or O Are not covered by the provisions of a recognized North American standard and are therefore manufactured to comply with as supported by the attached data which identifies the dimensions, materials of construction, pressure / temperature ratings and the basis for such ratings, and the marking of the fittings for identification. I further declare that the manufacturer of these fittings is controlled by a quality control program which has been verified by the following authority, BSI ISO 9001:2015 as being suitable for the manufacturer of these fittings to the stated standard. The fittings covered by this declaration, for which I seek registration, are **CATEGORY E - FILTERS** In support of this application, the following information, calculations and / or test data are attached: SCOPE OF CRN REGISTRATION, REPORTS, DRAWINGS, CALCULATIONS **II.** Declaration DECLARED before me at 16 Mill Street, Maidstone In the County Kent of 2022 February this 28th a day of Alexander Gwilum Astley

(Signature of Commissioner of Oaths) Technical Safety Authority of Saskatchewan III. Office Use Only To the best of my knowledge and belief, th 0E7432 13 e Boiler and Pressure Vessel Safety Act and Registration No. CSA B51, Clause 4.2, and is accepted for 13349 File No. _ Registered November 16, 2022 (Registration Number) YYYY (Expiry Date - MM DD YYYY) Date: April 29, 2032 f Inspector Expiry Date: Codes & Standards Compliance Office Alexander Gwilum Astley **TSK-1008** 16 Mill Street Rev. 10/2012 Maidstone, Kent. ME15 6XT Page 1 of 1 Tel: 01622 678341 Notary Public zaha

(Signature

HEADLINE FILTERS LTD

UNIT 1-2 MILL HALL BUSINESS ESTATE AYLESFORD, KENT ME20 7JZ, UNITED KINGDOM

PAGE 1 OF 1

SCOPE OF CRN REGISTRATION

Product	GA	Design	Material	Process	MAWP at MAWT		Report
Description	Drawings	Code	Specification	Connections	(psig at °F)	MDMT	Number
180VP	HF4/4642,	ASME B31.3	Stainless Steel	NPT: 1/4", 1/2", 3/4", 1"	4700 psig at 400°F/	-320°F /	R-1473
Filter	HF4/4607,		ASTM A479-316/316L,	SAE: 4 ,6 ,8 ,12, 16	324 barg at 204°C	-196°C	Rev. 0
	HF4/4650,		ASTM A182-F316/F316L		-		
	HF4/4616						

Note 1: MAWP = Maximum Allowable Working Pressure, MAWT = Maximum Allowable Working Temperature, MDMT = Minimum Design Metal Temperature

Note 2: The pressure-temperature ratings shown are the maximum CRN pressure-temperature ratings. In all cases the MAWP may be limited by the seat or seal material or other considerations. Please consult Headline Filters literature.

Note 3: For low temperature operation the products shall conform to the rules of the applicable codes under which they are used.

HEADLINE FILTERS LTD

UNIT 1-2 MILL HALL BUSINESS ESTATE AYLESFORD, KENT ME20 7JZ, UNITED KINGDOM

DESIGN REPORT IN ACCORDANCE WITH ASME B31.3, 2020

Product Description:	180VP Filter	
Main Drawing:	See "Manufacturing Program" Section of this Report (<i>Note 1)</i>	Technical
Process Connections:	NPT: 1/4", 1/2", 3/4", 1"	Safety Authority
	SAE: 4, 6, 8, 12, 16	Registration No. 0E7432.13
Materials of Construction:	Stainless Steel ASTM A479-316/316L, ASTM A182-F316/F316L	File No. 13349
Max Design Conditions:	324 barg at 204°C / 4700 psig at 400°F	
MDMT:	- 196°C / - 320°F	Registered
Corrosion Allowance:	NIL	Date: November 16, 2022
Mechanical Allowance:	NIL	Expiry Date: April 29, 2032
NDE:	None	Codes & Standards Compliance Office
PWHT:	None	
Note 1: See Annendix A fo	r Manufacturing Drawings	

Page 1 of 40

Headline housings are suitable for liquids and gases, these housings are ideal for high flow corrosive applications.

15-Apr-22

Design Report Number R-1473 Revision 0

MANUFACTURING PROGRAM

SAE Head Op	tions	16	12	8	SAE Head Options		16	12	8
Regular Bowl	Length			Regular Bowl Length					
38-172-Eleme	ent Option		GA Numbers		38-381-Eleme	ent Option		GA Numbers	
SAE	8	HF4/4650	HF4/4650	HF4/4650	SAE	8	HF4/4616	HF4/4616	HF4/4616
Drain	6	HF4/4650	HF4/4650	HF4/4650	Drain	6	HF4/4616	HF4/4616	HF4/4616
Options	4	HF4/4650	HF4/4650	HF4/4650	Options	4	HF4/4616	HF4/4616	HF4/4616
	Blank	HF4/4650	HF4/4650	HF4/4650		Blank	HF4/4616	HF4/4616	HF4/4616

NPT Head Op	tions	1"	3/4"	1/2"	NPT Head Options		1"	3/4"	1/2"
Regular Bowl	Length				Regular Bowl Length		ength		
38-172-Element Option		GA Numbers		38-381-Element Option		GA Numbers			
NPT	1/2"	HF4/4642	HF4/4642	HF4/4642	NPT	1/2"	HF4/4607	HF4/4607	HF4/4607
Drain	1/4"	HF4/4642	HF4/4642	HF4/4642	Drain	1/4"	HF4/4607	HF4/4607	HF4/4607
Options	Blank	HF4/4642	HF4/4642	HF4/4642	Options	Blank	HF4/4607	HF4/4607	HF4/4607

= Item Proof Tested in accordance with UG-101 of ASME Section VIII-1. See Report Section 1.0

The head dimensions are identical for all process connections. The only item that changes is the process connection size and type.

The bowl dimensions are identical for all process connections. The only item that changes is the drain size and type and the bowl length.

A sample of the component drawings that are provided with this report as shown below:

Sample Component Drawings Provided with Report					
180VP Head SAE16	HF4/4252				
180VP Head SAE12					
180VP Head SAE8	HF4/4522				
180VP Bowl (reg) SAE8					
180VP Bowl (reg) SAE6	HF4/4257				
180VP Bowl (reg) SAE4					
180VP Bowl (reg) Blank					
180VP Bowl (long) SAE8					
180VP Bowl (long) SAE6					
180VP Bowl (long) SAE4					
180VP Bowl (long) Blank					

HF4/4251
HF4/4256

ALLOWABLE STRESS

Material:		ASME B31.3 Stainless Steel ASTM A479-316L
Allowable Stress Values @	100 F=	16,700 psi, Stress Value from ASME B31.3 Table A-1
Allowable Stress Values @	400 F=	15,500 psi, Stress Value from ASME B31.3 Table A-1
Yield Stress @	100 F=	25,000 psi, Stress Value from ASME B31.3 Table A-1
Tensile Stress @	100 F=	70,000 psi, Stress Value from ASME B31,3 Table A-1
· · · · · · · · · · · · · · · · · · ·	Min Temp =	-425E
Material:		ASME B31.3 Stainless Steel ASTM A182-F316L
Allowable Stress Values @	100 F=	16,700 psi, Stress Value from ASME B31,3 Table A-1
Allowable Stress Values @	400 F=	15 700 psi, Stress Value from ASME B31 3 Table A-1
Yield Stress @	100 E=	25,000 psi, Stress Value from ASME B31.3 Table A-1
Tensile Stress @	100 F=	70 000 psi, Stress Value from ASME B31.3 Table A-1
	Min Temp =	
	Will Temp: -	
Material:		ASME B31.3 Stainless Steel ASTM A479-316
Allowable Stress Values @	100 E=	20 000 psi. Stress Value from ASME B31 3 Table A-1
Allowable Stress Values @	400 F=	19 300 psi, Stress Value from ASME B31 3 Table A-1
Vield Stress @	100 F=	30,000 psi, Stress Value from ASME B31.3 Table A-1
Tonsilo Stross	100 F=	75 000 psi, Stress Value from ASME B31.3 Table A-1
Tensile Stress @	Min Tomp -	
	Mini Temp. –	-JZJF
Material:		ASME B31 3 Stainlass Stool ASTM A182-E316
Allowable Stress Values	100 E-	20,000 psi Stross Value from ASME B31.3 Table A.1
Allowable Stress Values @	100 T =	10,200 psi, Stress Value from ASME D31.3 Table A-1
Allowable Stress values @	400 F=	19,500 psi, Stress Value from ASME B51.5 Table A-1
	100 F=	30,000 psi, Stress value from ASIVE B31.3 Table A-1
i ensile Stress @		75,000 psi, Stress Value from ASME B31.3 Table A-1
	Min Temp. =	-325F

In accordance with ASME B31.3 para. 302.2.3 components not listed in Table 326.1 may be used subject to all of the following requirements.

(a) The material shall comply with para. 323.(b) The designer shall be satisfied that the design is suitable for the intended service.

(c) Pressure-temperature ratings shall be established in accordance with the rules in para. 304.

Therefore, in order to satisfy the requirements of ASME B31 codes proof testing in accordance with UG-101 of ASME Section VIII-1 has been performed along with ASME B3`1.3 code calculations.

REPORT	DESCRIPTION	PAGE
SECTION		NO.
1	ASME Section VIII-1 UG-101 Proof Test	5
2	Filter Housing Top of Bowl - ASME B31.3 Pipe	7
3	Filter Housing Head - ASME B31.3 Pipe	8
4	Filter Housing Head Thickness	9
5	Filter Housing Head Thickness - Center Passageway	10
6	Filter Housing Lower Bowl Head Thickness	11
7	Head to Bowl Connection - Thread Shear	12
8	Process Connections - Thread Shear	13
9	NPT Process Connections	15
10	Strength of Branch / Process Connections	15

1/ Proof Test in accordance with Part UG-101 of ASME Section VIII-1

1.1/ SAMPLES TESTED

Testing was performed on a <u>Regular Bowl 38-172 Length Filter with 1" NPT process inlet and outlet connections</u> and a 1/2" NPT drain.

The filter was tested with the largest available process connections which justifies the smaller available process connections. See "Manufacturing Program" section of this report.

In additional the only difference between the 38-172 filters and the 38-381 filters is the bowl length.

Therefore, for configurations not tested justification is based on the results of the other sizes by referencing ASME Section VIII-1, "Rules for Construction of Pressure Vessels", Part UG101(d) Duplicate or similar parts.

In addition ASME B31.3 para. 304.7.2(e) states when proof testing is performed the designer may interpolate between sizes, wall thicknesses, and pressure classes, and may determine analogies among related materials.

1.2/ SECTION UG-101(M) CALCULATIONS

It is required that the product satisfy the requirements of UG-101 resulting in the following maximum allowable working pressure's (MAWP) at the following design temperatures.

To determine the required burst test pressure to satisfy the above MAWP at the above design temperatures the requirements of UG-101(k) apply. In accordance with the requirements of UG-101(k) the maximum allowable working pressure for vessels or parts that are to operate at temperatures at which the allowable stress value of the material is less than at the test temperature shall be determined by the following formula:

Po = Pt*(S/S2)

Samples:	22010074-1	
Material:	ASME B31.3	Stainless Steel ASTM A479-316
where;		
Po =	4700	psig, MAWP at the design temperature
Pt =		psig, MAWP at test temperature
S =	19300	psi, Maximum allowable stress value at the design temper
S2 =	20000	psi, Maximum allowable stress value at the test temperatu
Solving for P	t the results are	· ·
D4 -	4070 47	nois MANNO at teat to represent up on MANNO at 100 E
Pt =	4870.47	psig, MAWP at test temperature or MAWP at 100 F

In accordance with UG-101(m)(1) the burst test may be stopped at any pressure before rupture that will satisfy the requirements for the desired maximum allowable working pressure.

In accordance with UG-101(m)(2)(a) the MAWP of parts constructed of materials other than cast materials is determined as follows:

P = (B/4)x(SuE/Suavg)	or	P = (B/4)x(SuE/Sur)
Option A		Option B

where;

P = psig, MAWP

B = psig, Bursting Pressure, or hydrostatic test pressure at which the test was stopped

E = efficiency of welded joint, if used (No welded joints = 1, Welded Joints between Seamless Components = 0.85)

Su = psi, specified minimum tensile strength at room temperature.

Suavg = psi, average actual tensile strength of test specimens at room temperature

Sur = psi, maximum tensile strength of range of specification at room temperature.

The values of Suavg or Sur are determined from the pressure retaining components MTR's and materials specifications.

				Actual Tensile Strength		
			Minimum Tensile Strength	(M)	pa)	
Sample	Item	Material	per Specification, Su (Mpa)	Tensile's	Suavg	Suavg/Su
22010074-1	Head	ASTM A479-316	515	547	557	1.08
				559		
				551		
				572		
	Bowl	ASTM A479-316	515	572	572	1.11

A Copy of the Material Test Reports (MTR) can be found in Appendix B.

Therefore, to be conservative use the largest Suavg/Su value in the calculations. This value is

1.11

Therefore, the required burst pressure is calculated by the formula:

B = 4xPx(Suavg/SuE)

The following table summarizes the required burst test pressure to satisfy the required MAWP.

Sample	P = Pt = Calculated	Suavg/Su	E	B - Calculated Minimum
	MAWP at 100 F (psig)			Burst Pressure (psig) at 100 F.
22010074-1	4870.47	1.11	1	21625

1.3/ TEST RESULTS

Proof testing was witnessed by a National Board Inspector. See Appendix C for proof test results.

The results of the proof test show

Sample	Burst Pressure (psig)	Required MAWP at Test Temperature (Pt)(psig)	Burst CRN factor (X)	Failure Mode
21010542-1	21943	4870.47	4.51	Thread Shear

Note: Burst CRN factor based on UG-101(k) calculated MAWP at test temperature.

Therefore, since the actual burst pressure exceeds the calculated minimum burst pressure the item is suitable for the design conditions stated.

2/ Filter Housing Top of Bowl - ASME B31.3 PIPE (Straight Pipe under Internal Pressure)

The sections of the component with the smallest t/D ratio, where t = wall thickness and D = outside diameter, has been explored to ensure compliance with ASME B31.3. This area is the thickness under the groove.

The required thickness of straight sections of pipe shall be determined in accordance with equation (2) of section 304.1.1(a), where:

eq. (2) tm = t + c

Where;	
tm =	minimum required thickness
t =	pressure design thickness
c =	0.02 in, sum of mechan

0.02 in, sum of mechanical allowances plus corrosion and erosion allowances

Note: If wall thickness tolerance not specified you may assume c= 0.02" per ASME B31.3 paragraph 304.1.1.

The internal pressure design thickness for straight pipe shall be not less than that calculated in accordance with either eq. (3a) or eq. (3b)

eq. (3A) t = (PD)/(2(SEW+PY))

Therefore, The maximum internal Design Pressure can be calculated as

P = (2(tactual-c)/D)(SEW)/(1-2(tactual-c)y/D)

eq. (3b) t = (P(d+2c))/(2[(SEW)-P(1-y)])

Therefore, The maximum internal Design Pressure using equal (3b) can be calculated as

P = tactual(2SEW)/(d+2c+2tactual(1-y))

Where;		
P =		psig, Max. Internal Design Gage Pressure.
P Rated =	4700	psig, Maximum Rated Pressure per Manufacturer.
T Rated =	400	F
D = OD =		in., Outside Diameter
d = ID =		in., Inside Diameter. For pressure design calculation, the inside diameter of the pipe is the maximum value
		allowable under the purchase specification.
t actual =		in., Actual thickness minus mill and mechanical allowance (Variable T in ASME B31.3 para. 304.1.1)
S =	19,300	psi, Basic Allowable Stress Value ASME B31.3 Stainless Steel ASTM A479-316
E =	1.00	Quality factor
W =	1	Weld Joint Reduction Factor in accordance with para. 302.3.5(e).
y =		For t>=D/6, Y=(d+2c)/(D+d+2c)
		For t <d 6,="" y="0.4</td"></d>
P/SE =	0.244	< 0.385 Acceptable

The results of the calculations are as follows:

	D		d	D/6	t actual	У	P(3a)	P(3b)	P Rated	
Description	in.		in.		in.		psig.	psig.	psig	
Bowl		3.740	2.520	0.623	0.6100	0.40	6969	6969	4700	Acceptable
t (3a)	t (3b)		C	tm (3a)	tm (3b)					
in.	in.		in.	in.	in.					
0.4150)	0.3650	0.0200	0.4350	0.3850	Acceptable				

In all cases P rated is less than P, therefore the component is suitable for the design conditions stated.

3/ Filter Housing Head - ASME B31.3 PIPE (Straight Pipe under Internal Pressure)

The sections of the component with the smallest t/D ratio, where t = wall thickness and D = outside diameter, has been explored to ensure compliance with ASME B31.3. This area is the thickness under the groove.

The required thickness of straight sections of pipe shall be determined in accordance with equation (2) of section 304.1.1(a), where:

eq. (2) tm = t + c

Where;	
tm =	minimum required thickness
t =	pressure design thickness
c =	0.02 in, sum of mechar

e = 0.02 in, sum of mechanical allowances plus corrosion and erosion allowances

Note: If wall thickness tolerance not specified you may assume c= 0.02" per ASME B31.3 paragraph 304.1.1.

The internal pressure design thickness for straight pipe shall be not less than that calculated in accordance with either eq. (3a) or eq. (3b)

eq. (3A) t = (PD)/(2(SEW+PY))

Therefore, The maximum internal Design Pressure can be calculated as

P = (2(tactual-c)/D)(SEW)/(1-2(tactual-c)y/D)

eq. (3b) t = (P(d+2c))/(2[(SEW)-P(1-y)])

Therefore, The maximum internal Design Pressure using equal (3b) can be calculated as

P = tactual(2SEW)/(d+2c+2tactual(1-y))

Where;		
P =		psig, Max. Internal Design Gage Pressure.
P Rated =	4700	psig, Maximum Rated Pressure per Manufacturer.
T Rated =	400	F
D = OD =		in., Outside Diameter
d = ID =		in., Inside Diameter. For pressure design calculation, the inside diameter of the pipe is the maximum value
		allowable under the purchase specification.
t actual =		in., Actual thickness minus mill and mechanical allowance (Variable T in ASME B31.3 para. 304.1.1)
S =	19,300	psi, Basic Allowable Stress Value ASME B31.3 Stainless Steel ASTM A479-316
E =	1.00	Quality factor
W =	1	Weld Joint Reduction Factor in accordance with para. 302.3.5(e).
y =		For t>=D/6, Y=(d+2c)/(D+d+2c)
		For t <d 6,="" y="0.4</td"></d>
P/SE =	0.244	<0.385 Acceptable

The results of the calculations are as follows:

	D		d	D/6	t actual	у	P(3a)	P(3b)	P Rated	
Description	in.		in.		in.		psig.	psig.	psig	
Bowl		5.472	3.984	0.912	0.7440	0.40	5712	5712	4700	Acceptable
t (3a)	t (3b)		с	tm (3a)	tm (3b)					
in.	in.		in.	in.	in.					
0.607	1	0.5738	0.020	0.6271	0.5938	Acceptable				

In all cases P rated is less than P, therefore the component is suitable for the design conditions stated.

4/ Filter Housing Head Thickness

In accordance with section 304.4.1(b) of **ASME B31.3** closures may be designed in accordance with the rules in the BPV Code, Section VIII-1.

To determine the minimum head thickness calculations have been performed in accordance with UG-34 of ASME Section VIII-1.

It was chosen to treat the closure as equivalent to that shown in

The minimum required thickness of flat unstayed circular heads shall be calculated by the formula:

t = d*(CP/SE)^0.5+c

Therefore, The maximum internal Design Pressure can be calculated as

$P = ((tactual-c)/d)^2(SE/C)$

where;						
t=		ո., Minimum required thickness of flat head or cover				
tactual =		in., Actual Minimum Thickness	1., Actual Minimum Thickness			
d =		n., Maximum Dia., or short span, measured as indicated in Fig. UG-34.				
C =	0.33	factor in accordance with UG-34	actor in accordance with UG-34			
P=	4700	psig, Internal Design Pressure				
Pmax =		psig, Maximum possible rated pressure				
S =	19,300	psi, Basic Allowable Stress Value	ASME B31.3 Stainless Steel ASTM A479-316			
E =	1.00	Joint Efficiency				
c =	0.02	in. Corrosion Allowance				

The results of the calculations are as follows

Description	d max (in.)	t (in.)	tactual (in.)	P max (psig)
Head	3.984	1.149	2.677	26013

The actual thickness exceeds the required therefore the thickness is acceptable.

5/ Filter Housing Head Thickness - Center Passageway

In accordance with section 304.4.1(b) of ASME B31.3 closures may be designed in accordance with the rules in the BPV Code, Section VIII-1.

To determine the minimum head thickness calculations have been performed in accordance with UG-34 of ASME Section VIII-1.

It was chosen to treat the closure as equivalent to that shown in

Figure UG-34(h)

The minimum required thickness of flat unstayed circular heads shall be calculated by the formula:

t = d*(CP/SE)^0.5+c

Therefore, The maximum internal Design Pressure can be calculated as

$P = ((tactual-c)/d)^2(SE/C)$

where;						
t=		in., Minimum required thickness of flat head	n., Minimum required thickness of flat head or cover			
tactual =		in., Actual Minimum Thickness	n., Actual Minimum Thickness			
d =		in., Maximum Dia., or short span, measure	n., Maximum Dia., or short span, measured as indicated in Fig. UG-34.			
C =	0.33	factor in accordance with UG-34	actor in accordance with UG-34			
P=	4700	psig, Internal Design Pressure				
Pmax =		psig, Maximum possible rated pressure				
S =	19,300	psi, Basic Allowable Stress Value	ASME B31.3 Stainless Steel ASTM A479-316			
E =	1.00	Joint Efficiency				
c =	0.02	in., Corrosion Allowance				

The results of the calculations are as follows

Description	d max (in.)	t (in.)	tactual (in.)	P max (psig)
Head	1.142	0.3437	0.690	20131

The actual thickness exceeds the required therefore the thickness is acceptable.

6/ Filter Housing Lower Bowl Head Thickness

In accordance with section 304.4.1(b) of **ASME B31.3** closures may be designed in accordance with the rules in the BPV Code, Section VIII-1.

The minimum thickness of spherically dished heads shall be calculated by formula (3) given in Appendix 1-4(d) of ASME Section VIII-1.

eq. (3) ASME SECTION VIII-1: t = (PLM)/(2SE-0.2P) or P = (2SEt)/(LM+0.2t)

Where;							
t =		ո., minimum required thickness					
t actual =		in., Actual thickness	n., Actual thickness				
P =		psig, Max. Internal Design gage Pressure					
P Rated	4700	sig, internal design pressure					
T Rated	400	F					
L =		in, Crown radius					
M =		a factor depending on the head proportion	L/r				
D =		in, Inside diameter of head					
r =		in., inside knuckle radius					
S=	19300	psi, Maximum allowable working stress	ASME B31.3 Stainless Steel ASTM A479-316				
E =	1	Joint Efficiency					
c=	0.02	in. Sum of mechanical allowances plus cor	rosion allowances and erosion allowances				

The results of the calculations are as follows:

Description	D	L	r	L/r	м	t	tactual	Р
	in.	in.	in.			in.	in.	psig
Bowl Head	2.52	2.24	0.32	7.11	1.42	0.416	0.709	8022

The actual thickness exceeds the required therefore the thickness is acceptable.

In accordance with ASME Section VIII-1 UG-32(i) since the inside radius is less that 3 times the head thickness ASME VIII-1 U-2(g) applies. See Report Section 1.

7/ Head to Bowl Connection - Thread Shear

The head to bowl connection is made using a straight threaded joint sealed by a O-Ring

In accordance with ASME B31.3 para. 314.2.2

Threaded joints in which the tightness of the joint is provided by a seating surface other than the threads may be used.

In accordance with the ASME B31 codes and ASME Section II Part D Table 1A, Note (c) the allowable shear stress is 0.8X the basic allowable stress in tension.

The weakest material used for the threaded joint is: This materials determined allowable stress at Therefore, the allowable shear stress is equal to:

ASME B31.3	Stainless Stee	al ASTM A479-	-316
400	F is	19,300	psi
19,300	x 0.8 =	15,440	psi

PROPERTIES

Thread Type:	M100-2		
Pressure (P):	4700	psig, Internal I	Design Pressure
Pressure Dia. (D):		inch	= Internal Thread Major Diameter
Pressure Load (Ft):		Lb. = P*(3.14*	D^2/4)
Pitch Diameter (Es):		inch, Min Exte	rnal
Pitch Diameter (En):		inch, Max Inte	rnal
Minor Diameter (Kn):		inch, Max Inte	rnal
Major Diameter (Ds):		inch, Min Exte	rnal
Thread/inch (n):			
Engagement Length (Le):		inch	

EXTERNAL THREAD ANALYSIS

The shear area of the external thread is given by the formula:

As = 3.14*n*Le*Kn(1/2n+0.57735(Es-Kn))

	D	Ft	Es	Kn	n	Le	As	Ss = Ft/As
SIZE	(in.)	(Lbs.)	(in.)	(in.)		(in.)	(in^2)	(psi)
M100-2	3.958	57828	3.877	3.867	4.23	1.073	6.84	8459

INTERNAL THREAD ANALYSIS

The shear area of the internal thread is given by the formula:

An = 3.14*n*Le*Ds(1/2n+0.57735(Ds-En))

-	D	Ft	Ds	En	n	Le	An	Ss = Ft/An
SIZE	(in.)	(Lbs.)	(in.)	(in.)		(in.)	(in^2)	(psi)
M100-2	3.958	57828	3.924	3.8960	4.23	1.073	7.52	7692

Since the shear stress in the thread (Ss) is less than thread joint allowable stress the threads are acceptable.

8/ SAE Process Connections - Thread Shear

The filter inlet, outlet and drain connections can be supplied with various SAE threaded connections.

In accordance with ASME B31.3 para. 314.2.2

Threaded joints in which the tightness of the joint is provided by a seating surface other than the threads may be used.

The minimum thread length of the SAE process connections meet the requirements of SAE Standard J514 Table 4.

SAE		

TABLE 4 - DIMENS

Nom Tube OD, in	J ₂ Full Thread Min mm	J ₂ Full Thread Min ín	J ₃ Full Thread mm ±0.13	J ₃ Full Thread in ±0.005
1/8	6.38	0.251	5.94	0.234
3/16	7.16	0.282	5.94	0.234
1/4	7.62	0.300	6.73	0.265
5/16	8.41	0.331	6.73	0.265
3/8	8.46	0.333	7.92	0.312
1/2	9.52	0.375	8.74	0.344
5/8	11.71	0.461	9.93	0.391
3/4	11.91	0.469	11.91	0.469
7/8	13.11	0.516	11.91	0.469
1	14.30	0.563	11.91	0.469
1-1/4	14.30	0.563	11.91	0.469
1-1/2	16.79	0.661	11.91	0.469
2	21.44	0.844	11.91	0.469

In accordance with the ASME B31 codes and ASME Section II Part D Table 1A, Note (c) the allowable shear stress is 0.8X the basic allowable stress in tension.

The weakest material used for the threaded joint is: This materials determined allowable stress at Therefore, the allowable shear stress is equal to:
 ASME B31.3 Stainless Steel ASTM A479-316

 400 F is
 19,300 psi

 19,300 x 0.8 =
 15,440 psi

PROPERTIES SAE 04 - 0.250" Nom. Tube: 7/16-20 thread Thread Type: SAE 06 - 0.375" Nom. Tube: 9/16-18 thread SAE 08 - 0.500" Nom. Tube: 3/4-16 thread SAE 12 - 0.750" Nom. Tube: 1-1/16-12 thread SAE 16 - 1.000" Nom. Tube: 1-5/16-12 thread Pressure (P): 4700 psig, Internal Design Pressure Pressure Dia. (D): = Internal Thread Major Diameter inch Pressure Load (Ft): Lb. = P*(3.14*D^2/4) inch. Min External Pitch Diameter (Es): Pitch Diameter (En): inch, Max Internal Minor Diameter (Kn): inch, Max Internal Major Diameter (Ds): inch, Min External Thread/inch (n): Engagement Length (Le): inch

EXTERNAL THREAD ANALYSIS

The shear area of the external thread is given by the formula:

As = 3.14*n*Le*Kn(1/2n+0.57735(Es-Kn))

	D	Ft	Es	Kn	n	Le	As	Ss = Ft/As
SIZE	(in.)	(Lbs.)	(in.)	(in.)		(in.)	(in^2)	(psi)
4	0.4375	707	0.3995	0.3950	20	0.260	0.18	3967
6	0.5625	1168	0.5205	0.5150	18	0.307	0.28	4220
8	0.7500	2076	0.7029	0.6960	16	0.339	0.42	4969
12	1.0625	4167	1.0010	0.9900	12	0.464	0.83	5011
16	1.315	6383	1.2509	1.2400	12	0.464	1.04	6136

INTERNAL THREAD ANALYSIS

The shear area of the internal thread is given by the formula:

An = 3.14*n*Le*Ds(1/2n+0.57735(Ds-En))

	D	Ft	Ds	En	n	Le	An	Ss = Ft/An
SIZE	(in.)	(Lbs.)	(in.)	(in.)		(in.)	(in^2)	(psi)
4	0.4375	707	0.4281	0.4104	20	0.260	0.25	2869
6	0.5625	1168	0.5524	0.5323	18	0.307	0.38	3093
8	0.7500	2076	0.7391	0.7159	16	0.339	0.56	3693
12	1.0625	4167	1.0494	1.0158	12	0.464	1.12	3718
16	1.315	6383	1.2994	1.2659	12	0.464	1.39	4603

Since the shear stress in the thread (Ss) is less than thread joint allowable stress the threads are acceptable.

9/ NPT Process Connections

Pipe connection threads are NPT and meet the requirements of ASME B1.20.1 which is accepted by ASME B31.3 per paragraph 314.2.

ASME B31.3 allow the use of NPT connections.

10/ Strength of Branch / Process Connections

In accordance with ASME B31.3 para. 304.3.2

304.3.2 Strength of Branch Connections. A pipe having a branch connection is weakened by the opening that must be made in it and, unless the wall thickness of the pipe is sufficiently in excess of that required to sustain the pressure, it is necessary to provide added reinforcement. The amount of reinforcement required to sustain the pressure shall be determined in accordance with para. 304.3.3 or 304.3.4. There are, however, certain branch connections that have adequate pressure strength or reinforcement as constructed. It may be assumed without calculation that a branch connection has adequate strength to sustain the internal and external pressure that will be applied to it if

(c) the branch connection utilizes an unlisted branch connection fitting (see para. 300.2), provided the fitting is made from materials listed in Table A-1 or Table A-1M and provided that the <u>branch connection is qualified as</u> required by para. 304.7.2.

In order to qualify the branch connections in accordance with ASME B31.3 para 304.7.2 a proof test was performed in accordance with ASME Section VIII-1 UG-101. See Report Section 1.0

PREPARED BY:

Scott Islip, P. Eng. ROUND ENGINEERING INC. 15-Apr-22 Date

APPENDIX A

SHARP EDGES AND BURRS TO BE REMOVED

IF IN DOUBT ASK	DRAWING ISSUED BY:	ISSUE DATE:	QUANTITY:		scale: 1:2
Headline Filters Ltd Unit 1-2 Mill Hall Business Estate Aylesford	PART DESCRIPTION:	BOVP SAE6 BOV	VL	ECN No: *	THE COPYRIGHT OF THIS DRAWING IS RESERVED BY
Kent ME20 7JZ Tel: 01622 718927 Fax: 01622 882448			SURFACE FINISH: 32/	DRAWN BY: J.Rose	HEADLINE FILTERS LTD. IT IS ISSUED ON CONDITION IT IS NOT COPIED, REPRODUCED OR ISSUED TO ANY THIRD PARTY. FITHER WHOLLY OR
www.headlinefilters.com DO NOT SCALE	GENERAL TOLERANCE: X. +/- 0.25 X.XX +/- 0.125	MATERIAL: SAP99 3 1840	DRAWING NUMBER: HF4/4257	DATE: 10/02/2022	IN PART WITHOUT CONSENT IN WRITING FROM HEADLINE FILTERS LTD.

APPENDIX B

cOChe	COGNE ACCIAI SPECIALI S.p.a. ITALY - 11100 AOSTA - VIA PARAVERA, 16 TEL +39.0165.3021 - FX +39.0165.302296 CAP. SOC. 200.0000 EUR INT. VERS. VaT. ITMO5730967	Company with Management Systems certified according to ISO 9001, IATF 16949, EN 9100 and ISO 14001.
CUSTOMER: CUSTOMER'S ORDER: MANUFACTURER'S WORKS: PRODUCER OF THE DOC	COGNE U.K. LI P1-40352 AOSTA, VIA PA	MITED MAVERA 16 - ITALY
MANUFACTUREN'S WORKS ORDER NO: MARK OF THE MANUFACTURER: DISPATCH NOTE: THE CERTIFIED PRODUCTS ARE COMPL	VUALITY DEPAR 25285011 /30 COGNE YING TO THE PURCHASE OR	ТМЕИТ WEIGHT: DER, EXCEPT FOR EXEMPTIONS AGREED МІТН ТНЕ СИСТОМЕР ТЕЛ З
PRODUCT: JEEC. SURFACE FINISH: PRODUCT DELIVERY CONDITION:	ADZ000MERKBLA SPE ROUGHPEELL 1X HOT Finish RS SOLUTTON AD	TTW10 TECHNICĂL RULE:
PRODUCT DIMENSIONS (mm): GRADE: IDENTIFICATION HEAT NO: MARKING OF THE PRODUCT:	139,7000100 (5,56 316L-S31600/3 173482 1.4404	D0 in) 1603-1.4404/1.4401 INTERNAL GRADE: 04000 06000 (00157 00236 in) 1603-1.4404/1.4401 INTERNAL GRADE: F316L IMCO 1503-1.4404/1.4401 INTERNAL GRADE: 903460 TEST PIECE N: 346
AISI 316/316L - UNS S31600/S3160 DOCUMENT ISSUED IN AGREEMENT WITH REFERENCE NORMS:EN 10088-3, EN 1 SA276, ASTM A479/ASME SA479, ASTH ISO <u>1</u> 5156-3/NACE MR0175, NACE MR03	3 - 1.4404/1.4401 H TUEV BAYERN(11.1972) V 0272, ASTM A276/ASME MA193 B8M CLASSE 1D, 103/ISO 17945	WAVING OF COUNTERSIGNING (SEE TUEV BAYERN LETTER DATED 17.01.80).
REFURENCE NORMS FOR CHEMICAL COM REFURENCE NORMS FOR CHEMICAL COM REFURENCE NORMS: EN 10088-3 2014 SA429/SA479M, AMS 5653J, AMS 5641 SA429/SA479M, AMS 5653J, AMS 5641 REFERENCE NORMS FOR CHEMICAL COM REFERENCE NORMS ONLY FOR CHEMICAL	POSITION AND MECANICHAL POSITION ONLY: EN 10222- , EN 10272 2016, ASTM AX BM, ISO15156-3/NACE MR01 POSITION AND MECHANICAL	<pre>PROPERTIES: ASTM A182/ASME SA182 -5, ASTM A484, ASTM A403, ASTM A314. 276/A276M, ASTM A479/A479M, ASTM A193 B8MCLASSE 1D, ASME SA276/SA276M, ASME 175 2015, NACE MR0103/ISO 17945, NORSOK M630 MDSS01 REV5. PROPERTIES: ASTM A182, ASME SA182.</pre>
ASME SECT. IT PART A EDITION 2015- STEELMAKING EAF + AOD + CONTINUON THE MATERIAL IS PRODUCED ACCORDIN HOT ROLLED REDUCTION RATIO 5,5	- CUMPOSITION: EN 10222- -2017-2019 JS CASTING NG TO SPECIFICATION AD20	-5 2017,ASTM A403-07a, ASTM A484-18a,ASTM A314-08, AMS-QQ-S-763D. 300-MERKBLATT W2/W10
CHEMICAL LADLE ANALYSIS ACCORDINC Control lot No Weight :020000 ELEMENTS	5 TO ASTM A751 - EN ISO 1885679 - C Si	14284 7.373 KG - 192.621 LB
OBTAINED ELEMENTS OBTAINED	0,015 0,23 Co 0,14	1,78 0,026 0,025 0,079 16,89 2,06 10,19 0,39
HARDNESS TEST IN AS DELIVERY CONE Control lot No Weight :020000 SPECIFICATION OBTAINED 14	DITION 0897121 - 3 10 ENISO6506	3.073 KG - 6.775 LB G.775 LB COGNE GROUP CHECKED COGNE GROUP CHECKED COGNE GROUP CHECKED COGNE GROUP CHECKED COMPACING METHOD: 10/3000

-Cogne

DATE 10.12.2021

180VP Head, Batch 13717

4678

cOChe	COGNE ACCIAI SPECI ITALY - 11100 AOSTA - TEL + 39.0165.3021 - FA TEL + 39.0165.3021 - FA CAP. SOC. 200.000.000 C.F. 02187330076 - VAT: IT0057320076 -	I ALI S.p.a. - VIA PARAVERA, 16 - 2 VIA PARAVERA, 16 - 2 VIA 105:302296 0 EUR INT. VERS. R.E.A. n. A0-50474	Company with Man according to ISO 99 ISO 14001.	agement Systems 001, IATF 16949, El	certified V 9100 and		INSPECTIO	NN CERTIF.	CATE 3.1 C	EN 10204.2004
								ă	CUMENT NUM	BER 2021058144 PAGE 2/3
IMPACT TEST IN AS DELIVER'S Control lot No Weight SPECIFICATION TYPE OF TEST PIECE TEST TEMPERATURE °C	<pre>(CONDITION :020000897121</pre>	- EN ISO 148- KV 20	3.073 KG 1-KV2	I	6.77 DIRECTION	5 LB	rest piec	л : Э		
MEASUREMENT UNIT OBTAINED	434 437	J 436 432 432	434	435	430	430	430	433	437	
TENSILE TEST IN AS DELIVER Control lot No Weight SPECIFICATION	KY CONDITION :020000897121	- EN-ISO6892-	3.073 KG	1	6.77 DIRECTION	5 LB	FEST PIEC	ц 		
MEASUREMENT UNIT		RM MPA	RP02 MPA	г А5 86	% [2	RP7 MP7	_ 7			
DBTAINED		547 559 751 21	233 239 252 252	5.0 66,1 62,9 60,2 60,2 60,2	79,5 79,2 71,5	2222				
SRAIN SIZE Scontgol lot No Weight SPECTFICATION JBTAFNED	:020000897121 5	- ASTME	3.073 KG 112	I	6.77	5 LB				
CORROSION TEST ACCORDING T MATERIAL ACCORDING TO ASME	O ASTM A262 PR SEC. II Ed. 2	ACTICE E EN I 015	SO 3651-2 PI	RACTICE A	: SATISFAC	TORY.				
IMFACT IEST Control lot No Weight SPECIFICATION TYPE OF TEST PIECE	:020000897121	- EN ISO 148 KV	3.073 KG 1	I	6.77 DIRECTION	5 LB OF THE T	EST PIEC	ц Ц		
IESI IEMFERATUKE C MEASUREMENT UNIT DBTAINED	209	J 196- 199 215 215	211	217	213	207	197	213	213	
								l landamarkara	COGNE GRA	
								สราสภาพระโครมสาย สราสภาพระโครมสาย	- 5 JAN	166565
DATE 10.12.2021		BARBARA VIET	TTI MV (WORKS	S INSPECT	OR) - ELEC	TRONICALL	Y GENERA	TED CERTI	FICATE	-Coqne

4678

--Cogne

		4678	
Mod D0 and INSPECTION CERTIFICATE 3.1 (EN 10204:2004) DOCUMENT NUMBER 2021058144 PAGE 3.3	6.775 LB DIRECTION OF THE TEST PIECE: L EL 4,0 D 61,7 58,1 66,1 61,5	FBH 5 (diam. 102-250), FBH 8 (diam. 250,01-400). LASS C AND EN10060: SATISFACTORY. 250,01-400). G AGENT STAMP S2) - 2000/53/EU - 2002/95/EU(ROHS) - 2003/11/EU- ISSUE OF THIS DOCUMENT. IATF 16949:2016 (THE LAST ONE ONLY FOR WIRE ROD AND HOT INATION AT TIME OF SHIPMENT AND WAS PRODUCED WITHOUT INATION AT TIME OF SHIPMENT AND WAS PRODUCED WITHOUT 13/59/EURATOM , IAEA RS-G-1.7 AND IAEA SSG-17.	Bridi Rik
Company with Management Systems cer according to ISO 9001, IATF 16949, EN 9- ISO 14001.	3.073 KG - 0.5"SPEC - KSI KA KSI % 35 76,0 36 71,7 36,8 37 75,1	8 Class.3, ASTM A388 CCORDING TO EN10221 C N., LOT N., RECEIVIN PLIES WITH FAR DFARS 53) - 2011/65/EU (ROH ISION AT THE DATE OF II EN ISO 9001:2015 - AND OR RADIUM CONTAM AND OR RADIUM CONTAM FER: ASTM E181.	
COGNE ACCIAI SPECIALI S.p.a. ITALY - 11100 AOSTA - VIA PARAVERA, 16 TEL +39.0165.3021 - FAX +39.0165.302296 CAT. SOC. 2000.000 EUR INT. VERS. C.F. 02187380967 VAT: IT00571320076 - R.E.A. n. AO-50474	:020000897121 - ASTMA370-E8- ASTMA370-E8- KSI 81 83 83 83 83	<pre>E MR0103/ISO 17945 TO EN 10308 Class:3, EN 1022 ACE AND DIMENSIONAL CONTROL A ATERTAD. TATENTONETRE: SATISFACTORY. TATMINATION. TTAMINATION. UUF. WORK, MATERIAL N., CAST UUF. WORK, MATERIAL N., CAST CGIN: ITALY, THE MATERIAL COM DIRECTIVES: 2015/863/EU (ROH E INTENDED IN THEIR LAST REV UNESS STEEL BARS). TY MERCURY, MERCURY COMPOUNDS TAMMA SPECTROMET ULESS STEEL BARS). TY MERCURY, MERCURY COMPOUNDS TAMMA SPECTROMET OCRED WITH A GAMMA SPECTROMET OCRED WITH A GAMMA SPECTROMET UCTS BELOW 0.1 BQ/G ACCORDING</pre>	
KOChe	FENSILE TEST Control lot No Weight SPECIFICATION MEASUREMENT UNIT OBTAINED	MATERIAL ACCORDING TO NACE JUTRASONIC TEST ACCORDING VISUAL INSPECTION OF SURFA ANTIMIX TEST BY PORTABLE S NO WELDING REPAIR ON THE MAN FREE FROM RADIOCTIVITY CON MARKING: SYMBOL OF THE MAN COUNTRY OF MELTING AND ORI 552-7009 ALT 1. THE PRODUCT SATISFIES THE COUNTRY OF MELTING AND ORI 1962 THE NORMS MENTIONED AR 2003/618/EU AND FED 2014/6 ALL© THE NORMS MENTIONED AR 2003/618/EU AND FED 2014/6 ALL© THE NORMS MENTIONED AR NATERIAL IS FREE OF AN INSPECTOR'S STAMP LF ROLLED-PEELED-GROUND STAIN INSPECTOR'S STAMP LF ROLLED-PEELED-GROUND STAIN INSPECTOR'S STAMP LF ROLLED-PEELED-GROUND STAIN INSPECTOR'S STAMP LF STAMP ACTIVITY CONTROL PERFU 3AMMA ACTIVITY ON THE PROD	

COGNE ACCIAI SPECIALI S.p.a.

DATE 10.12.2021

--Cogne

INSPECTION CERTIFICATE acc to

B

A

A02/Z03

EN 10204 3.1

CERTIFICATE

NO.	A/21 956980	Rev	00
Date	2021-05-24	Page	1/3

A06

THE METAL CENTRE WESTERN WAY WS10 7BW WEDNESBURY UNITED KINGDOM

GB-243079-01/20

Customer References C61858 - ROLLED 180-00991 METAL CO-W	A07 Customer order 2021-03-11	Sandvik Ref Order No. 567642 SMT No. 284-33699	Subs No. 695687 C.Code 03	SMT Dispatch 22007/53	A08 note
Material description HOT WORKED BAR STEEL ROLLED ANNEALED & STRAIGHTENED PEEL TURNED AND POLISHED Metallurgical process E+AOD+LRF	B01/B04 Origin c70 Sweden	Steel/mater: Sandvik SANMAC 316/S AISI 316/316L W.nr 1.4401/1.440	ial Design SANMAC 316	nations 5L UNS S31600/S31603 EN no 1.4401/1.4404	B02
Technical requirements EN 10088-3:-2014, EN 1022 EN10272:-2016, EN 10088-5 NACE MR0175/ISO 15156-3:- ASTM A-276-17, ASME SA-27 ASTM A-479-19, ASME SA-47 ASTM A-484-20A, ASTM A-18 Sandvik DDR SP2016-03. NO *For detailed information	2-5:2017(Chemica * 2015, NACE MR010 6-ED-19 SECT II 9-ED-19 SECT II 2-20*, Metal cen RSOK M-630 ED-6, , please see the	ls and Mecha 3/ISO 17945- PART A, PART A, ter specific, NORSOK MDS a appendix	nicals on 1:-2015 ation GB0 S01 REV.5	ly) 1 Rev I,	B03
EXTENT OF DELIVERY					B07-B13

TEST RES	Product d MBRX-SANMA	esignation C316L-101.6	Heat (562005	Lot 3 44871 Total	Pieces 20 20	Kg 6606.0 6606.0		907-813
Chemical	compositi	on (weight%)						
Heat	С	Si Mi	ı P		s	Cr	Ni	Mo
562005	0.018 N	0.29 1.7	72 0.0)35 (0.029	16.87	10.09	2.01
562005	0.045							
	Quality	assurance	- Erik Jan	nsson/Q	A-manage	r Primary	Products	A05/Z02

MTC Service / Certificates

AB SANDVIK MATERIALS TECHNOLOGY Reg No. 556234-6832 VAT No. SE556234683201 SE-81181 SANDVIKEN SWEDEN www.materials.sandvik mtc_service.smt@sandvik.com Page 30 of 40

4679[.]

Tensile test a Longitudinal	at room	temperature a	acc. to	ASTM A370/IS	0 6892	2-1	
Location half	radius						
Socacion naii	Vield	etronath	Topail	o strongth	Flore		
	Mana	MDa	Tenstr	e strengtn	FTOUG	jacion	
T - +	mpa n-0 0	mpa D-1 0	мра		- 7	*	
LOT	Rp0.2	Rp1.0	Rm		A	2"	
448/1	245	283	572		57	57	
	Red.of	Area					
	8						
	Z.						
	80						
Hardnoog toot	and to			1			
Taroniess Lest	acc.to	ASIM A-3/0/1	50 6506~	L			
Location nall	radius						
	Min	Max					
Lot	HB	HB					
44871	144	146					
	Min	Max					
Lot	HRB	HRB					
44871	76	76					
		,					
Grain size acc	to AST	FM E-112.					
Location half	radius						
Lot						. ·	
14871	555	5				-	
44071	J.J J.	• J _					
Toppost tost	T			N 070/TOO 1	40 1		
Impact test, t	, Longi	itudinal acc.	to ASTM	A-370/180 1	48-1		
Location hair	radius						
	Single	values	Avg.	Temperature			
Lot	Joule		Joule	°C			
44871	265	291 274	277	20			
	268	269 273	270	20			
Following cont	rols/te	ests have beer	n satisfa	actorily per	formed	1:	
- Intergranula	ar corro	osion test acc	to EN 1	ISO 3651-2 M	ethod	Α.	1
- Material Ide	entifica	ation with spe	ectrosco	pe.			
- Ultrasonic t	est áco	to EN 10308:	2002. 0	ality Class	3		
- Visual inspe	ection a	and dimensiona	al contro		C		•
Tabuar inopt	Joeron (if concr.				
	r.						
20-30mm. Mator		$1050^{\circ}C$	min 20				
ZU-SUMM: Mater	IAI SOA	$\frac{1}{2} \frac{1}{2} \frac{1}$	min. 20	minutes. Qu	encned	i in water.	
water temp pre	e-quencr	n max 40°C, ai	ter que	nch max 50°C	•		
	•						
35-150mm: In p	process	annealed acco	ording to	D ASTM A484	above	the minimum	
hot rolling te	emperati	ire of 1010°C	and rap:	idly cooled.			
155-350mm: Mat	erial s	soaking 1065°C	2, min. 3	30 minutes. (Quench	led in	
water. Water t	emp pre	e-quench max 4	10°C, af	ter quench m	ax 50°	'C.	
		-	-	-			
355-370mm: Mat	erial s	soaking 1050°C	. min.	60 minutes (Ouench	ed in	
water. Water t	emp pre	e-quench max 4	10°C. aft	ter quench m	2 x 50°		
Hatter Match (South bro	- quenen max -	, al	cor quench ill	un JU	· ·	
375-450mm • Ma+	orial -	soaking 1050°c	min	120 minutar	0110	had in	
JIJ-4JUNNE: Mat	errar s	SUARING 1030 (\sim 1111	120 minutes.	Quenc		
waler. Water t	.emp pre	e-quench max 4	iu C, ar	ler quench m	ax 50°	L.	
m }							
The raw materi	.a⊥ is f	tree from radi	oactive	contaminati	on.		

.

CERTIFICATE

No.	A/21-956980	Rev	00
Date	2021-05-24	Page	3/3

Material free from mercury contamination.

No welding or weld repair.

This is to certify that the contents of this certified material test report are correct and accurate and that all test results and operations are in compliance with the material specification.

Certified acc. Pressure Equipment Directive (2014/68/EU Annex 1 para 4.3) TUEV CERT-Certification body for pressure equipment of the TUEV NORD GRUPPE; notified body, reg.-no. 0045.

The delivered products comply with the specifications and requirements of the order.

The material is manufactured according to a Quality system, approved and registered to ISO 9001:2015.

No unauthorized alterations. The contents of this Inspection Certificate may not be modified or revised in any way without the prior written approval of Sandvik Materials Technology. Unauthorized alterations to the Inspection Certificate, including introduction of false, fictitious or fraudulent statements or entries, may be punishable by fines, imprisonment, or both. This Inspection Certificate may be copied only in the manner and for the purposes specified in Section 6 of EN 10204:2004. Contravention of this notice will be prosecuted to the fullest extent of applicable law.

The certificate is produced with EDP and valid without signature.

APPENDIX

Lab accreditation Our lab is accredited under SWEDAC Accreditation number 1636 for testing as per ISO/IEC 17025

Applicable only to specific dimensions 20mm - 250mm: EN 10088-5 EN (Only valid for CE marked products together with Sandvik Declaration of Performance certificate).

Suitable for manufacturing of components in acc. with *ASTM A-182.

AB SANDVIK MATERIALS TECHNOLOGY Reg No. 556234-6832 VAT No. SE556234683201 SE-81181 SANDVIKEN SWEDEN www.materials.sandvik mtc_service.smt@sandvik.com

APPENDIX C

Hydrostatic Pressure Burst Tests

Report Number: 22010074

Quotation Number: P21-0287

Report for:	Round Engineering Inc. 10 Segwun Rd. Waterdown, ON LOR 2H6 Canada
Attention:	Scott Islip, P. Eng.
Telephone:	905-689-9185

Report Date:

April 11, 2022

1.0 INTRODUCTION

At request of Round Engineering Inc., Infinity Testing Solutions (ITS) conducted ambient pressure burst test for one (1) filter sample. The sample was assigned with ITS sample number and described as below. The test was performed on April 08th, 2022.

Sample Numbers	Description	Sample Receiving Date
22010074-1	Filter Hsg Model 180VP 1" NPT (1/2" NPT Drain)	2022-02-22

2.0 TEST APPARATUS

The test was performed on a computer-controlled servo hydraulic pressure testing system at ambient temperature. Test medium was city water. The sample had a properly sized fitting installed for pressure input, as seen in Figures section. The sample was pre-filled with city water and free of entrapped air before testing was performed.

3.0 TEST PROCEDURE

The test pressure was increased at a constant ramp rate until ultimate failure or leakage occurred. The pressure time history and maximum pressure was recorded by a precision pressure transducer.

4.0 **RESULTS**

The test results are listed in the following table:

Sample Number	Test Rate	Result	Figures
22010074-1	50 psi/s	Sample burst, maximum pressure achieved 21,943 psig	2,3

TSSA inspector, Mr. Amir Pourafshar (NB No. 16233), reviewed the test setup, verified the entire testing procedure, and signed the "Pressure Test Records" sheet as attached in Appendix A.

Infinity Testing Solutions Inc.

Prepared by:

Deep Shah, Test Technologist

Reviewed by:

Rob Banach, Lab Manager

This report refers only to the particular samples provided and is limited by the test and/or analysis performed. Similar articles may not be of like quality, and other testing and/or analysis methods might give different results.

Figures (2 Pages)

Figure 1: Sample 22010074-1 test setup

Figure 2: Sample 22010074-1 burst, maximum pressure achieved 21,943 psig

Figures (Page 1 of 2) Page 37 of 40

Hydrostatic Pressure Test Data Plot 2022-04-08

Figure 3: Sample 22010074-1 test pressure chart

APPENDIX A: PRESSURE TEST RECORD SHEET

(1 page)

Pressure Testing Records

Project Number	22010074	
Client Name	Round Engineering	

Sample Information:

Sample Number	Description	
22010074-1	Filter Hsg Model 180VP 1" NPT (1/2" NPT Drain)	

Test Results:

Sample No.	Test Rate	Result	Testing Date
22010074-1	50 psi/s	Sample burst, maximum pressure achieved 21,943 psig	2022-04-08

Testing performed according to ASME Sec.VIII Div.I, UG-101 (m).

Test Instrumentation:

Instrument Name	Range	ITS Instrumentation Number	Serial Number	Calibration Due
Stellar Pressure Transducer	0-60,000 psig	M0049	1308447	2023-01-20

Tested by:

Infinity Testing Solutions Inc.

Deep Shah, Test Technologist

Reviewed by:

Infinity Testing Solutions Inc.

David Wang, P.Eng.

Witnessed by:

TSSA Amir Pourafshar NB No. 1

Page 1 of 1